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Abstract—In an augmented information (AgI) service, users
consume information that results from the execution of a chain
of service functions that process source information to create
real-time augmented value. Applications may include real-time
analysis of remote sensing data, real-time computer vision,
personalized video streaming, and augmented reality, among
others. We consider the problem of optimal distribution of AgI
services over a wireless computing network, in which nodes are
equipped with both communication and computing resources. We
characterize the wireless computing network capacity region and
design a joint flow scheduling and resource allocation algorithm
that stabilizes the underlying queuing system while achieving
arbitrarily close to minimum network cost, with a tradeoff in
network delay. Our solution captures the unique chaining and
flow scaling aspects of AgI services, while exploiting the use of
the broadcast approach over the wireless channel.

I. INTRODUCTION

Internet traffic will soon be dominated by the consumption
of what we refer to as augmented information (AgI) ser-
vices. Unlike traditional information services, in which users
consume information that is produced or stored at a given
source and it is delivered via a communications network, AgI
services provide end users with information that results from
the processing of source information via possibly multiple
service functions that can be hosted anywhere in the network.
Examples include real-time analysis of remote sensing data,
real-time computer vision, personalized video streaming, and
augmented reality services, among others.

While today’s AgI services are mostly implemented in the
form of virtual functions instantiated over general purpose
servers at centralized cloud data centers, the increasingly low
latency requirements of next generation real-time AgI services
is driving cloud resources closer to the end users in the form of
small cloud nodes at the edge of the network, resulting in what
is referred to as a distributed cloud network [1]. This naturally
raises the question of where to execute each service function,
a question that is impacted both by the computation and the
communication resources of the cloud network infrastructure.
Ref. [1] addressed the cloud service distribution problem as a
global optimization problem, where the goal is to find the
placement of service functions and the routing of network
flows that meets a given set of demands with minimum total
cloud network cost. The capacity of wireline cloud networks
was recently addressed by the present authors in [2] and [3].
These works provided the first characterization of a cloud

network capacity region in terms of the closure of input rates
that can be stabilized by any control algorithm and designed
a throughput-optimal dynamic control policy that achieves
arbitrarily close to minimum average network cost.

A key missing aspect in all these works is the wireless net-
work. AgI services are increasingly sourced and accessed from
wireless devices, and with the advent of mobile computing,
service functions can also be hosted at wireless computing
nodes (i.e., computing devices with wireless networking ca-
pabilities). When introducing the wireless network into the
computing infrastructure, the often unpredictable nature of the
wireless channel further complicates flow scheduling, routing,
and resource allocation. In the context of traditional wireless
multi-hop networks, the Lyapunov drift plus penalty (LPP)
control methodology (see [4] and references therein) has
shown to be a promising approach to tackle these intricate
stochastic network optimization problems. Ref. [5] extends the
LPP approach to multi-hop, multi-commodity wireless ad-hoc
networks, leading to the Diversity Backpressure (DIVBAR)
algorithm. DIVBAR exploits the broadcast nature of the
wireless channel without the need of instantaneous channel
state information (CSI), and it is shown to be throughput-
optimal under the assumption that at most one packet can be
transmitted in each transmission attempt and that no advanced
coding scheme is used. Ref. [6] further incorporates rateless
coding in the transmission of a single packet.

Motivated by the important role of wireless networks in
the delivery of AgI services, in this paper, we address the
problem of optimal distribution of AgI services over a multi-
hop wireless computing network. The network is composed
of nodes with communication and computing capabilities. We
extend the multi-commodity-chain flow model in [2], [3] for
the delivery of AgI services over wireless multi-hop computing
networks, enabling the characterization of the unique flow
chaining and scaling aspects of AgI services. We adopt the
broadcast approach [7], [8], where information is encoded into
superposition layers according to the channel conditions, in
order to exploit routing diversity with enhanced transmission
efficiency. We characterize the capacity region of a wireless
computing network and design a fully distributed flow schedul-
ing and resource allocation algorithm that adaptively stabilizes
the underlying queuing system while achieving arbitrarily
close to minimum network cost, with a tradeoff in network
delay.



The remainder of the paper is organized as follows: Section
II presents the system model. Section III characterizes the
network capacity region of a wireless computing network. Sec-
tion IV describes the proposed dynamic wireless computing
network control (DWCNC) algorithm. Section V provides the
performance analysis of the proposed algorithm. The paper is
concluded in Section VI.

II. SYSTEM MODEL

A. Network model

We consider a wireless computing network composed of
N = |N | distributed computing nodes that communicate
over wireless links labeled according to node pairs (i, j) for
i, j ∈ N . Node i ∈ N is equipped with Ktr

i transmission
resource units (e.g., transmit power) that it can use to transmit
information over the wireless channel. In addition, node i is
equipped with Kpr

i processing resource units (e.g., central pro-
cessing units or CPUs) that it can use to process information
as part of an AgI service (see Sec. II-B).

Time is slotted with slots normalized to integer units
t ∈ {0, 1, 2, . . . }. We use the binary variable ytri,k(t) ∈ {0, 1}
to indicate the allocation or activation of k ∈ {0, . . . ,Ktr

i }
transmission resource units at node i at time t, which incurs
wtri,k cost units. Analogously, ypri,k(t) ∈ {0, 1} indicates the
allocation of k ∈ {0, . . . ,Kpr

i } processing resource units at
node i at time t, which incurs wpri,k cost units. Notice that
binary resource allocation variables ytri,k(t), ypri,k(t) must satisfy∑
k∈Ktr

i
ytri,k(t) ≤ 1,

∑
k∈Kpr

i
ypri,k(t) ≤ 1.

B. Augmented information service model

We consider the distribution of an augmented information
service described by a chain of functionsM = {1, 2, . . . ,M}
for a subset of destination nodes D ⊆ N . We adopt a
multi-commodity-chain flow model [1], in which commodity
(d,m) ∈ D × {M, 0} identifies the flow of information units
(of arbitrarily fine granularity, e.g., bits) output of function
m ∈ M for destination d ∈ D. Commodity (d, 0) denotes
the source commodity for destination d, which identifies the
flow of information units that arrive exogenously at the origin
nodes O ⊆ N for destination d (see Fig. 1).

Each service function has (possibly) different processing
requirements. We use r(m) to denote the number of operations
per information unit performed by function m. Another key
aspect of AgI services is the fact that information flows can
change size as they go through service functions. Let ξ(m) > 0
denote the scaling factor of function m. Then, the size of the
function’s output flow is ξ(m) times as large as its input flow.
Moreover, a processing delay D(m)

i (in timeslots) is incurred
in executing function m at node i, as long as the processing
flow satisfies the node’s processing rate constraint.

C. Wireless transmission model

Due to the broadcast nature of the wireless medium, multi-
ple receivers (RXs) may overhear the transmission of a given
transmitter (TX). Multiple TXs may transmit simultaneously
to overlapping RXs, due to the use of orthogonal broadcast
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Fig. 1. Illustration of the AgI service chain for destination d ∈ D. There
are M functions and M + 1 commodities. The AgI service takes source
commodity (d, 0) and delivers final commodity (d,M) after going through
the sequence of functions {1, 2, . . . ,M}. Function m takes commodity
(d,m− 1) and generates commodity (d,m).

channels of fixed bandwidth, a priori allocated by a given
policy, whose design is out of the scope of this paper. We
model the channel between node i and all other nodes in the
network as a physically degraded Gaussian broadcast channel,
where the network state process (the vector of all channel
gains), denoted by S(t) ≡ {sij(t),∀i, j ∈ N}, evolves
according to a Markov process with state set S and whose
steady-state probability exists. We assume that the statistical
channel state information (CSI) is known at the TX, while the
instantaneous CSI can only be learned after the transmission
has taken place and is thereby outdated (delayed).

It is well-known that superposition coding is optimal (capac-
ity achieving) for the physically degraded broadcast channel
with independent messages [9]. In particular, in this work
we adopt the broadcast approach (see [7], [8] and references
therein), which consists of sending incremental information
using superposition layers, such that the number of decoded
layers at any RX depends on its own channel state, and
the information decoded by a given RX is a subset of the
information decoded by any other RX with no worse channel
gain. That is, for a given transmitting node i, if we sort the
N − 1 potential receiving nodes in non-decreasing order of
their channel gains {gi,1, . . . , gi,N−1}, such that gi,n with
n ∈ {1, . . . , N − 1} denotes the receiver with the n-th lowest
channel gain, then the information decoded by receiver gi,n
is also decoded by receiver gi,l, for l > n. Moreover, let
Ωi,n

∆
= {gi,n, · · · , gi,N−1} be the set of receivers with the

N − n highest channel gains. Then, we can partition the
information transmitted by node i during a given timeslot
into N − 1 disjoint groups, with the n-th partition being the
information decoded by every node in Ωi,n and not by any
node in Ωi,l with l < n.

Let γ̃i,k(a) denote the optimal power density function of
k transmission resource units at node i. Then, based on the
broadcast approach [8], the maximum achievable rate on link
(i, j) at time t is given by

Rij,k(t) =

∫ sij(t)

0

aγ̃i,k(a)

1 + a
∫∞
a
γ̃i,k(s)ds

da. (1)

D. Communication protocol

The communication protocol between each TX-RX pair
within one timeslot is illustrated in Fig. 2. At the beginning
of each timeslot, TX and RX exchange all necessary control
signals, including queue backlog state information (see Sub-
section II-F). Then, the TX decides how many transmission
resource units to allocate for the given timeslot and how
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Fig. 2. Timing diagram of the communication protocol over a wireless link
for one timeslot

to allocate the given bandwidth among the commodities for
transmission.1 Afterwards, the transmission starts and lasts
for a fixed time period (within the timeslot); during that time
both data and pilot tones (whose overhead is neglected) are
transmitted. After the transmission ends, every potential RX
provides immediate feedback, which may include decoded
information and/or experienced CSI.2 The TX then makes a
forwarding decision that determines the information units for
which each RX gets forwarding responsibility and sends the
decision as a final instruction to all the RXs. Only the RX
that gets the forwarding responsibility keeps the corresponding
information units, while others discard their copies.3

We use µ(d,m)
ij (t) to denote the information units of com-

modity (d,m) kept by node j after the transmission from node
i during timeslot t. The total amount of information kept by
node j from the transmission from node i can be no larger
than the maximum achievable rate on link (i, j):

∑
(d,m)

µ
(d,m)
ij (t) ≤

Ktr
i∑

k=0

Rij,k(t) ytri,k(t), ∀i, j, t, (2)

with Rij,k(t) given by (1).
In addition, it shall be useful to denote by µ

(d,m)
igi,l,n

(t) the
information kept by node gi,l from the n-th partition of node
i’s transmitted information at time t. We then have

µ
(d,m)
igi,l

(t) =

l∑
n=1

µ
(d,m)
igi,l,n

(t), ∀i, l, d,m, t, (3)

∑
(d,m)

N−1∑
l=n

µ
(d,m)
igi,l,n

(t) ≤
Ktr

i∑
k=0

[
Rigi,n,k(t)−Rigi,n−1,k(t)

]
ytri,k(t),

∀i, l, n, t, (4)

where Rigi,0,k(t) = 0, ∀i, k, t. Note that (4) is consistent with
the fact that only one copy of the transmitted information units
is kept for forwarding.

E. Computing model

We assume a static dedicated computing channel model,
where the achievable processing rate at node i with the
allocation of k processing resource units is given by Ri,k.
We use µ(d,m)

i,pr (t) to denote the assigned flow rate from node

1Note that we require by definition uniform power spectral density.
2Note that with the broadcast approach, the TX can identify the information

units decoded by each RX directly from the CSI feedback.
3The control information, feedbacks and final instruction are sent though a

stable control channel.

i to its processing unit for commodity (d,m) at time t, and
µ

(d,m)
pr,i (t) for the flow rate from the processing unit back to

node i. Then,

µ
(d,m)
pr,i (t) = ξ(m)µ

(d,m−1)
i,pr (t−D(m)

i ), ∀i, d,m>0, t, (5)∑
(d,m> 0)

µ
(d,m−1)
i,pr (t) r(m) ≤

Kpr
i∑

k=0

Ri,k y
pr
i,k(t), ∀i, t, (6)

where (5) and (6) are multi-commodity-chain and maximum
rate constraints, respectively [1].

F. Queuing model

We denote by a(d,m)
i (t) the exogenous arrival rate of com-

modity (d,m) ∈ D × {M, 0} at node i during timeslot t,
and by λ

(d,m)
i its expected value. We assume that a(d,m)

i (t)
is independently and identically distributed (i.i.d.) across
timeslots and that its second moment is upper bounded by
constant A2

max. Recall that, in an AgI service, only the source
commodity (d, 0) enters the network exogenously, while all
other commodities are created inside the network as the output
of a service function. Hence, a(d,m)

i (t) = 0, for all t when
m > 0 or i /∈ O.

During network evolution, internal network queues buffer
the data according to their commodities. We define the queue
backlog of commodity (d,m) at node i, Q(d,m)

i (t), as the
amount of commodity (d,m) in the queue of node i at the
beginning of timeslot t, which evolves over time as follows:

Q
(d,m)
i (t+1) ≤

Q(d,m)
i (t)−

∑
j:j 6=i

µ
(d,m)
ij (t)− µ(d,m)

i,pr (t)

+

+
∑
j:j 6=i

µ
(d,m)
ji (t) + µ

(d,m)
pr,i (t) + a

(d,m)
i (t). (7)

Note that, in an AgI service, only the final commodity
(d,M) is allowed to exit the network once it arrives to its
destination d ∈ D, while any other commodity (d,m), m <
M , can only get consumed by being processed into the next
commodity (d,m+ 1) in the service chain. Final commodity
(d,M) is assumed to leave the network immediately upon
arrival/decoding, i.e., Q(d,M)

d (t) = 0, for all d, t.

G. Network Objective

The goal is to develop a control algorithm that dynamically
distributes the service and schedules the flow in the network
to minimize the average resource cost

lim sup
t→∞

1

t

∑t−1

τ=0
E {h(τ)} , (8)

where h(τ) is the total cost of the network at time τ :

h (τ)
∆
=
∑
i∈N

Kpr
i∑

k=0

wpri,k y
pr
i,k(τ) +

Ktr
i∑

k=0

wtri,k y
tr
i,k(τ)

, (9)

while ensuring the network is rate stable [4], i.e.,

lim
t→∞

1

t
Q

(d,m)
i (t) = 0 with prob. 1, ∀i, d,m. (10)



III. WIRELESS COMPUTING NETWORK CAPACITY REGION

The wireless computing network capacity region Λ is de-
fined as the closure of all input rate matrices {λ(d,m)

i } that
can be stabilized by the network according to some control
algorithm conforming to the network and service structure
specified in Section II.

Let πs denote the steady state probability distribution of the
network state process S(t).

Theorem 1. The wireless computing network capacity re-
gion Λ consists of all average exogenous input rates
{λ(d,m)

i } for which there exist multi-commodity flow vari-
ables f (d,m)

ij , f (d,m)
pr,i , f (d,m)

i,pr , together with probability values
αpri,k, αtri,k(s), β(d,m)

i,pr (k), β(d,m)
i,tr (s, k), η(d,m)

ij (s, k, n), for all
i, j 6= i, k, d,m, and all network states s ∈ S, such that:∑

j
f

(d,m)
ji + f

(d,m)
pr,i + λ

(d,m)
i ≤

∑
j
f

(d,m)
ij + f

(d,m)
i,pr , (11)

f
(d,m)
pr,i = ξ

(m)
i f

(d,m−1)
i,pr , m > 0 (12)

f
(d,m)
i,pr ≤ 1

r(m+1)

∑Kpr
i

k=0
αpri,kβ

(d,m)
i,pr (k)Ri,k, (13)

f
(d,m)
ij ≤

∑
s∈S

πs
∑Ktr

i

k=0
αtri,k(s)β

(d,m)
i,tr (s, k)

×
∑g−1

i,s (j)

n=1

[
Rigi,n,k(s)−Rigi,n−1,k(s)

]
η

(d,m)
ij (s, k, n),

(14)

f
(d,M)
i,pr = 0, f

(d,0)
pr,i = 0, f

(d,M)
dj = 0, (15)

f
(d,m)
i,pr ≥ 0, f

(d,m)
ij ≥ 0, (16)∑Kpr

i

k=0
αpri,k ≤ 1,

∑Ktr
i

k=0
αtri,k(s) ≤ 1, (17)∑

(d,m)
β

(d,m)
i,pr (k) ≤ 1,

∑
(d,m)

β
(d,m)
i,tr (s, k) ≤ 1, (18)∑

j
η

(d,m)
ij (s, k, n) ≤ 1, (19)

where s denotes the network state, whose (i, j)-th element
(s)ij indicates the channel state of link (i, j) and g−1

i,s (j) is
the index of node j in the sequence {gi,1, · · · , gi,N−1}, given
the network state s. Finally, with an abuse of notation, in (14),
Rij,k (s) denotes the rate given by (1) with sij(t) equal to the
(i, j)-th element of s.

Furthermore, the minimum average network cost required
for network stability is given by

h̄∗ = minh (20)

where

h =
∑

i∈N

(∑Kpr
i

k=0
αpri,kw

pr
i,k +

∑Ktr
i

k=0
wtri,k

∑
s∈S

πsα
tr
i,k(s)

)
,

(21)
and the minimization is over all f (d,m)

i,pr , f (d,m)
ij , αpri,k, αtri,k(s),

β
(d,m)
i,pr (k), β(d,m)

i,tr (s, k), and η
(d,m)
ij (s, k, n) satisfying Eqs.

(11)-(19).

�
Proof: The proof of Theorem 1 is omitted here due to

space limitations and can be found in [10].

In the above theorem, (11) are flow conservation constraints,
(13) and (14) are rate constraints, and (15) and (16) are non-
negativity and flow efficiency constraints. The probability val-
ues αpri,k, αtri,k(s), β(d,m)

i,pr (k), β(d,m)
i,tr (s, k) and η

(d,m)
ij (s, k, n)

define an optimal stationary randomized policy, where:
• αpri,k: the probability that k processing resource units are

allocated at node i;
• αtri,k(s): the probability that k transmission resource units

are allocated at node i, conditioned on the network state
s;

• β
(d,m)
i,pr (k): the probability that node i processes commod-

ity (d,m), conditioned on the allocation of k processing
resource units;

• β
(d,m)
i,tr (s, k): the probability that node i transmits com-

modity (d,m), conditioned on the network state s and on
the allocation of k transmission resource units;

• η
(d,m)
ij (s, k, n): the probability that node i forwards the

information of the n-th partition to node j, conditioned
on the network state s, and on the allocation of k
transmission resource units.

It is important to note that this optimal stationary ran-
domized policy is hard to obtain in practice, as it requires
the knowledge of {λ(d,m)

i } and solving a complex nonlinear
program. However, its existence is essential for proving the
performance of our proposed dynamic control algorithm.

IV. THE DYNAMIC WIRELESS COMPUTING NETWORK
CONTROL ALGORITHM

Defining a non-negative control parameter V representing
the degree to which we emphasize resource cost minimization,
we propose a dynamic wireless computing network control
strategy that accounts for both transmission and processing
-related flow and resource allocation decisions in a fully
distributed manner.

Dynamic Wireless Computing Network Control
(DWCNC):

Local wireless transmission decisions: At timeslot t, each
node i observes its local queue backlogs, the queue backlogs
of its potential RXs and the associated statistical CSI, and
performs the following operations:

1) For each commodity (d,m) and each receiving node j,
compute the differential backlog weight

W
(d,m)
ij (t)

∆
=
[
Q

(d,m)
i (t)−Q(d,m)

j (t)
]+

.

2) For each transmission resource allocation choice k ∈
{0, . . . ,Ktr

i }, compute the transmission utility weight
for each commodity (d,m):

W
(d,m)
i,k,tr (t)

∆
=
∑
s∈S

Pr (S(t) = s|S (t− 1) = s̃)

×
N−1∑
n=1

[
Rigi,n,k (s)−Rigi,n−1,k (s)

]
max

j∈Ωi,n(s)

{
W

(d,m)
ij (t)

}
,

where s̃ denotes the CSI feedbacks at time t − 1, and,
with an abuse of notation, Ωi,n(s) is used to indicate
the dependence of Ωi,n on the the network state.



3) Compute the optimal number of resource units k†tr to
allocate and the optimal commodity (d,m)†tr to transmit:[

k†tr, (d,m)
†
tr

]
= arg max

k,(d,m)

{
W

(d,m)
i,k,tr (t)− V wtri,k

}
.

(22)
Denote by W tr†

i (t) the corresponding metric value.
4) If W tr†

i (t) > 0, node i transmits commodity (d,m)†tr
by allocating k†tr transmission resource units; otherwise,
node i keeps silent (k†tr = 0) at time t.

5) After receiving the CSI feedbacks, node i derives the
information decoded by each RX and assigns the for-
warding responsibility for the n-th partition of the
transmitted information to the RX in Ωi,n(S(t)) with
the largest positive W (d,m)

ij (t), while all other RXs in
Ωi,n(S(t)) and node i discard the information. If no
receiver in Ωi,n(S(t)) has positive W

(d,m)
ij (t), node i

retains the information of partition n, while all the
receivers in Ωi,n(S(t)) discard it. Note that, with an
abuse of notation, Ωi,n(S(t)) is here used to indicate the
dependence of Ωi,n on the the realization of the network
state at time t.

Local processing decisions: At timeslot t, each node i ob-
serves its local queue backlogs and performs the following
operations:

1) For each commodity (d,m), compute the processing
utility weights

W
(d,m)
i (t)

∆
= 1
r(m+1)

[
Q

(d,m)
i (t)−ξ(m+1)Q

(d,m+1)
i (t)

]+
,

Specifically, W (d,m)
i (t) indicates the benefit of executing

function (m+ 1) to process commodity (d,m) into
commodity (d,m+1) at time t, in terms of the local
backlog reduction per processing unit cost.

2) Compute the optimal number of resource units k†pr to
allocate and the optimal commodity (d,m)†pr to process:[
k†pr, (d,m)†pr

]
=arg max

k,(d,m)

{
Ri,kW

(d,m)
i (t)− V wpri,k

}
.

(23)
3) Make the following flow rate assignment decisions:

µ
(d,m)†pr
i,pr (t) = Ri,k†pr

/
r(m†pr+1);

µ
(d,m)
i,pr (t) = 0, ∀(d,m) 6= (d,m)†pr.

Note from the above description that the complexity as-
sociated to the transmission decisions at node i in each
timeslot is O(Ktr

i NM), dominated by the need to compute a
transmission utility weight for each (k, (d,m)) pair in order
to choose the pair the maximizes the metric in (22). In
contrast, for the local processing decisions at node i in each
timeslot, maximizing the metric in (23) over (k, (d,m)) can
be decomposed into first maximizing W

(d,m)
i (t) over (d,m)

and then maximizing the metric over k given the maximized
W

(d,m)
i (t), requiring O(Kpr

i + NM) operations. Hence, the
overall complexity of the DWCNC decisions at node i in each
timeslot is O(Ktr

i NM +Kpr
i ).

V. PERFORMANCE ANALYSIS

Theorem 2. If the rate matrix λ
∆
= {λ(d,m)

i } is strictly
interior to the capacity region Λ, then DWCNC stabilizes
the wireless computing network, while achieving a (statistical
and temporal) average total resource cost arbitrarily close to
minimum average cost h

∗
(λ); i.e.,

lim sup
t→∞

1

t

t−1∑
τ=0

E [h(τ)] ≤ h∗(λ) +
NB

V

lim sup
t→∞

1

t

∑
τ,i,d,m

E
[
Q

(d,m)
i (τ)

]
≤
NB + V

[
h
∗
(λ+ε1)−h∗(λ)

]
ε

where B is a constant that depends on the system parameters
Ri,Ktr

i
(s), Ri,Kpr

i
, Amax, ξ(m), D(m)

i and r(m); ε is a positive
constant satisfying (λ + ε1) ∈ Λ; and h

∗
(λ) denotes the

average cost obtained by the optimal solution.

�
The proof of Theorem 2 is shown in Appendix A.

VI. NUMERICAL EXPERIMENTS

In this section, we simulate the performance of DWCNC
over 5 × 105 timeslots in a wireless computing network
composed of 10 nodes, as shown in Fig. 3a. We assume all
nodes are equipped with 1 transmission resource unit, whose
activation incurs 1 cost unit. All links can be in 3 channel
states, {0, 1, 2}, with associated transmission rates {0, 1, 2}
information units per timeslot, respectively. We assume all
active links, represented by an edge in Fig. 3a, have channel
state probabilities {0, 1/2, 1/2}, while all inactive links, repre-
sented by the absence of an edge in Fig. 3a, have channel state
probabilities {1, 0, 0}. In terms of processing resources, we
assume all 10 nodes are equipped with 1 processing resource
unit with processing rate 2 operations per timeslot. Activating
the processing resource unit incurs 1 cost unit at every node,
except at nodes 5 and 6, where it incurs 0.5 cost units.

We consider 2 services, each composed of 2 functions. All
4 functions require 1 operation per information unit and take
10 timeslots per operation. The first and second functions
of Service 1 have a scaling factor of 1 and 2, respectively,
while the first and second functions of Service 2 have a
scaling factor of 0.5 and 1, respectively. That is, the second
function of Service 1 is an expansion function, while the first
function of Service 2 is a compression function. We assume
one source-destination pair for Service 1, with source in node
2 and destination in node 10, and another for Service 2, with
source in node 1 and destination in node 8. Both source nodes
receive exogenous arrivals with rate satisfying i.i.d. Poisson
distribution across timeslots with mean value 1 information
unit per timeslot. We assume every node in the network has
the ability to implement all 4 functions.

Fig. 3b shows the processing flow rate distribution for the
4 functions across the network nodes. Observe that function
(1, 1) (Service 1, Function 1) is mostly implemented at node
5, which is the node with lowest processing cost along the
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Fig. 4. AgI service distribution over a 10-node wireless computing network. a) Time average cost v.s. control parameter V ; b) Time average total backlog
(occupancy) vs. control parameter V ; c) Time average cost evolution over time.

1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

Node Index

Pr
oc

es
si

ng
 F

lo
w

 R
at

e

 

 

Service 1, Function 1
Service 1, Function 2
Service 2, Function 1
Service 2, Function 2

1	  

3	  

2	  

5	  

6	  

7	  

4	  

9	  

8	  

10 

(a) (b) 

Fig. 3. a) 10-node wireless computing network supporting 2 services with
source-destination pairs 2-10 (blue arrows) and 1-8 (red arrows), respectively;
b) Processing flow rate distribution across wireless computing nodes.

shortest path from the source (node 2) to the destination (node
10) of Service 1. Note, however, that function (1, 2), which
is an expansion function, is entirely implemented at node 10,
the final destination of Service 1, in order to minimize the
transmission cost impact of the larger-size final commodity. It
is interesting to see that function (1, 1) gets also implemented
at node 10 in order to process a small portion of its input
commodity. While not shown in the figure, the portion of this
commodity that gets processed at node 10 is routed through
the path 2-3-4-10 in order to avoid congesting node 5, which
is also implementing function (2, 2) for Service 2. Looking at
Service 2, note that function (2, 1), which is a compression
function, is entirely implemented at node 1, the source of
Service 2, in order to reduce flow size before even entering
the network. On the other hand, function (2, 2) gets split
between nodes 7 and 5 (cheapest processing nodes) in order
to avoid congesting node 2, which is on the shortest path of
both Service 1 and Service 2. While not shown in the figure,
the portion of the input commodity to function (2, 2) that gets
implemented at node 5 goes around node 2 by following the
path 1-3-5-6-8.

Figs. 4a and 4b illustrate the tradeoff between average cost
and average total queue backlog as a function of the control
parameter V . The average cost is shown to decrease inversely
proportional to V until convergence to approximately 5.9
cost units, while the average queue length increases linearly
with V , confirming the [O(1/V ), O(V )] cost-delay tradeoff
of Theorem 2. Finally, Fig. 4c shows the time evolution of

the average cost for V = 20 and V = 100. Consistent with
Theorem 2, a larger V provides a smaller deviation from the
minimum average cost at the expense of slower convergence.

VII. CONCLUSIONS

We considered the problem of optimal distribution of aug-
mented information services over wireless computing net-
works. We characterized the capacity region of a wireless
computing network and designed a dynamic wireless com-
puting network control (DWCNC) algorithm that drives local
transmissions-plus-processing flow scheduling and resource
allocation decisions, shown to achieve arbitrarily close to
minimum average network cost, with a tradeoff in network
delay. Our solution captures the unique chaining and flow
scaling aspects of AgI services, while exploiting the use of
the broadcast approach over the wireless channel.
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APPENDIX A
PROOF OF THEOREM 2

Let the network’s Lyapunov drift [4] be defined as

∆(H(t)) , 1
2

∑
i,(d,m)

E
[(
Q

(d,m)
i (t+ 1)

)2

−
(
Q

(d,m)
i (t)

)2
∣∣∣∣H (t)

]
,

where H (t) , {Q (t),S (t− 1)}.
By squaring both sides of (7) and summing over (d,m) ∈

D × {M, 0}, after further algebraic manipulations, we have

∆(H(t))+V E{h(t)|H(t)}≤NB0+
∑
i,(d,m)λ

(d,m)
i Q

(d,m)
i (t)

−
∑
i E {Υ(t)+Zpri (t)−V hpri (t) + Ztri (t)−V htri (t)|H (t)},

(24)

where NB0 bounds the sum of the quadratic flow terms, and

Υ(t) =
∑
i,(d,m)Q

(d,m)
i (t)

[
µ

(d,m)
pr,i (t)− µ(d,m)

pr,i

(
t+D

(d,m)
i

)]
,

Zpri (t) =
∑

(d,m)
µ

(d,m)
i,pr (t)

[
Q

(d,m)
i (t)− ξ(m+1)Q

(d,m+1)
i (t)

]
,

Ztri (t) =
N−1∑
l=1

∑
(d,m)

µ
(d,m)
igi,l

(t)
[
Q

(d,m)
i (t)−Q(d,m)

gi,l
(t)
]
, (25)

hpri (t) =
∑Kpr

i

k=0 w
pr
i,ky

pr
i,k (τ), htri (t) =

∑Ktr
i

k=0 w
tr
i,ky

tr
i,k (τ).



Lemma A.1. The DWCNC algorithm, at each timeslot t,
maximizes E{Ztri (t)− V htri (t)|H(t)} subject to (2)-(4) and
E{Zpri (t)− V hpri (t)|H(t)} subject to (5)-(6).

Proof: See Appendix B.

Lemma A.1 implies that the right hand side of (24) under
DWCNC is no larger than the corresponding expression under
the stationary randomized policy of Theorem 1 that supports
(λ + ε1) ∈ Λ and achieves average cost h

∗
(λ + ε1):

∆(H(t))+V E{h(t)|H(t)} ≤ NB +
∑

i,(d,m)

λ
(d,m)
i Q

(d,m)
i (t) +∑

i

E
[
Υ(t)−Z∗pri (t)−V h∗pri (t)+ Z∗tri (t)−V h∗tri (t)

∣∣H(t)
]
,

≤ NB + V h
∗
(λ+ε1)+E {Υ(t)|H(t)}−ε

∑
i

∑
(d,m)

Q
(d,m)
i (t) .

(26)

Using the fact that 1
t

∑t−1
τ=0 E{Υ (τ)} can be upper bounded

by a constant NBΥ and denoting B , B0 + BΥ, then,
from inequality (26), standard Lyapunov drift manipulations
[4] readily lead to the conclusions of Theorem 2.

APPENDIX B
PROOF OF LEMMA A.1

Due to the deterministic nature of the computing chan-
nel, maximizing E{Zpri (t)− V hpri (t)|H(t)} is equivalent to
maximizing Zpri (t)−V hpri (t). The maximization of Zpri (t)−
V hpri (t) subject to (5)-(6) can be achieved by the greedy
choice of commodity (d,m), resource allocation k, and the
greedy assignment of processing rate µ(d,m)

i,pr (t), as described
by the local processing decisions of DWCNC.

With respect to the transmission decisions, it follows by
plugging (3) into (25) that

Ztri (t)=
∑

(d,m)

N−1∑
n=1

N−1∑
l=n

µ
(d,m)
igi,l,n

(t)
[
Q

(d,m)
i (t)−Q(d,m)

gi,l (t)
]
. (27)

Let β(d,m)
i,tr (t) be the fraction of time-frequency resources

allocated to the transmission of commodity (d,m) at timeslot
t, and let η(d,m)

ij,n (t) be the fraction of commodity (d,m)
decoded by the set of nodes Ωi,n and forwarded to node j,
with n ≤ g−1

i,S(t)(j). We then have

µ
(d,m)
igi,l,n

(t) = β
(d,m)
i,tr (t)η

(d,m)
igi,l,n

(t)
[
Rigi,n,k(S(t))−Rigi,n−1,k(S(t))

]
,

∀i, t, (28)∑
(d,m)

β
(d,m)
i,tr (t) ≤ 1, ∀i, t, (29)∑

j
η

(d,m)
ij,n (t) ≤ 1, ∀i, t, (d,m). (30)

Plugging (28) into (27) and taking the expectation conditioned
on H(t) and {ytri,k(t) = 1}, it follows that

E
{
Ztri (t)|H(t), ytri,k(t) = 1

}
(a)

≤
∑

(d,m)

N−1∑
n=1

E
{
β

(d,m)
i,tr (t)

N−1∑
l=n

η
(d,m)
igi,l,n

(t)W
(d,m)
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(t)

×
[
Rigi,n,k (S (t))−Rigi,n−1,k (S (t))

]∣∣H (t) , ytri,k(t) = 1
}

(b)

≤
∑
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N−1∑
n=1

E
{
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(d,m)
i,tr (t) max

j∈Ωi,n(S(t))

{
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(d,m)
ij (t)

}
×
[
Rigi,n,k (S (t))−Rigi,n−1,k (S (t))

]∣∣H (t) , ytri,k(t) = 1
}
,

(c)
=
∑

(d,m)

E
{
β

(d,m)
i,tr (t)

∣∣∣H (t), ytri,k(t) = 1
}N−1∑
n=1

E
{

max
j∈Ωi,n(S(t))

{
W

(d,m)
ij (t)

}
×
[
Rigi,n,k (S (t))−Rigi,n−1,k (S (t))

]∣∣H (t) , ytri,k(t) = 1
}

(d)

≤ max
(d,m)

{
N−1∑
n=1

E
{

maxj∈Ωi,n(S(t))

{
W

(d,m)
ij (t)

}
×
[
Rigi,n,k (S (t))−Rigi,n−1,k (S (t))

]∣∣H (t) , ytri,k(t) = 1
}}

= max
(d,m)

{
W

(d,m)
i,k,tr (t)

}
(31)

In (31), inequality (a) follows from the definition of
W

(d,φ,m)
ij (t); inequality (b) follows from (30); equal-

ity (c) holds because, given H(t) and {ytri,k(t) =
1}, the values of Rigi,n,k (S (t))−Rigi,n−1,k (S (t)) and
maxj∈Ωi,n(S(t)){W

(d,m)
ij (t)} are a function of S(t) and in-

dependent of β(d,m)
i,tr (t); inequality (d) follows from (29).

Finally, based on (31), we further have

E {Ztri (t)− V htri (t)|H(t)}

≤
Ktr

i∑
k=0

[
max(d,m)

{
W

(d,m)
i,k,tr (t)

}
− V wtri,k

]
Pr
[
ytri,k(t) = 1

]
(e)

≤ max
k,(d,m)

{
W

(d,m)
i,k,tr (t)− V wtri,k

}
, (32)

In (31) and (32), the upper bounds (a) and (b) can be
achieved by implementing step 5) of the local transmission
decisions of DWCNC; the upper bound (d) and (e) can be
achieved by implementing step 3) of the local transmission
decisions of DWCNC, concluding the proof of Lemma A.1.
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